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Abstract. For spin-polarized low-energy electrons impinging on non-magnetic crystalline
surfaces, the collision with a valence electron and the ensuing emission of an electron pair are treated
in a distorted-wave Born approximation formalism with exchange, in which the four relevant quasi-
one-electron states are solutions of the Dirac equation. Numerical calculations for W(001), which
were carried out in two coplanar geometries with normal and grazing incidence of a primary beam
polarized normal to the reaction plane, show that the (e, 2e) cross section changes significantly upon
reversal of the polarization. Originating mainly from spin–orbit coupling in the valence electron
state, asymmetries of up to 30% occur in conjunction with sizable intensity. The calculated spectra
respond sensitively to changes in the surface structure.

(Some figures in this article appear in colour in the electronic version; seewww.iop.org)

1. Introduction

For electrons impinging on atomic or solid targets, an important reaction channel involves
a single collision event with a valence electron resulting in two electrons leaving the solid.
Energy- and momentum-resolved observation of these two electrons is frequently referred to
as (e, 2e) spectroscopy. A variety of recent results and ample references to a vast body of
literature may e.g. be found in the monograph [1]. (e, 2e) spectroscopy applied to solids in
the transmission mode using high-energy primary electrons is a well-established technique,
which in particular reveals the momentum density of the valence electrons (cf. e.g. [2,3]).

At low primary electron energies (less than a few 100 eV), the short mean free paths
necessitate the observation of the electron pair in the reflection mode for solid surfaces.
Substantial experimental and theoretical progress was only made fairly recently (see [4–12]
and references therein).

In particular, an extensive joint experimental and theoretical study of the energy- and angle-
resolved (e, 2e) cross section was recently carried out for primary electrons with energies below
25 eV incident on a clean W(001) surface [9]. A time-of-flight technique made it possible
to measure simultaneously energies and momenta of two electrons emerging in coincidence.
In the theoretical treatment, elastic multiple scattering by the ion cores was fully taken into
account for the primary electron, the valence electron, and the two detected electrons. The
good overall agreement which was reached between experimental data and their calculated
counterparts inspired confidence in the methods used and gave insight into details of the (e, 2e)
process.

† Permanent address: Physics Department, Huazhong University of Science and Technology, Wuhan, China.
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In the above low-energy (e, 2e) studies for solid surfaces, the primary electron beam was
unpolarized and the two outgoing electrons were not spin analysed. Even for non-magnetic
surfaces, however, one can expect a dependence of the (e, 2e) cross section on the spin
polarization of the primary beam: on the one hand, such spin asymmetry is well known from
low-energy electron diffraction (LEED) (see e.g. [13–15] and references therein), and on the
other hand, in (e, 2e) studies the primary electron state is a LEED state and the outgoing ones
are time-reversed LEED states (cf. [9]). The physical origin of this asymmetry is spin–orbit
coupling (SOC). Furthermore, SOC effects are well known to be significant in the valence
electron structure of bulk solids (cf. e.g. [16,17]) and of surface systems (cf. e.g. [18,19] and
references therein). The valence electron state can therefore also be expected to give rise to
an observable asymmetry of the (e, 2e) cross section.

It is the aim of the present work to explore the SOC-induced spin asymmetry of the (e, 2e)
intensity for non-magnetic surfaces by means of calculations made on the basis of the spin-
dependent extension of a method which has been demonstrated [9] to be quantitatively adequate
for spin-averaged (e, 2e) studies. Insight into the collision mechanism and in particular into
the relative importance of SOC in the four participating one-electron states is obtained by
making additional calculations, in which SOC and elastic layer scattering matrix elements are
selectively switched off.

This paper is organized as follows. The theoretical method and specific model assumptions
for the numerical calculations are described in section 2. In section 3 we present and discuss
calculated spin-dependent low-energy (e, 2e) results for W(001) for two coplanar scattering
geometries.

2. Theory

2.1. Model and formalism

The (e, 2e) reaction cross section for spin-polarized low-energy electrons impinging on a
non-magnetic crystalline surface system can be calculated by means of an extension of the
method described in [9]. In what follows we outline this method and derive the appropriate
spin-dependent expressions.

The observable quantity of interest is the cross section for the following (e, 2e) reaction.
A primary electron, which at the source (electron gun) has kinetic energyE1, momentumk1,
and spin alignmentσ1 = ± with respect to some given axise, collides with a valence electron
(with E2 < EF , whereEF is the Fermi energy), and two directly produced outgoing electrons
are observed, which at the detectors have kinetic energiesE3 andE4 and momentak3 and
k4. Let the spin of the two outgoing electrons not be resolved, since this is beyond present-
day experimental capabilities. The energyE2 of the valence electron is determined from the
energies of the primary and the detected electrons by the conservation lawE1 +E2 = E3 +E4.
Because of lattice periodicity parallel to the surface, the surface-parallel momentumk

‖
i with

i = 1, 2, 3, 4 is a good quantum number for each of the four electron states;k
‖
1 andk‖3,4 are

given as the surface projections of the incident and the detected electron momenta, respectively,
andk‖2 is then determined by the conservation lawk‖1 + k‖2 = k‖3 + k‖4.

The four one-electron states are obtained as solutions of a Dirac equation with an effective
one-electron potential describing the interaction with the atomic nuclei and the ground-state
electrons of the surface system. For each electron state, there are consequently two independent
spinor solutionsψσi

i (x), which are characterized by the spin labelσi = ±. For the primary
electron state, the spin-quantization axis and the spin labelσ1 are fixed by the boundary
condition at the spin-polarized electron source.
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The primary electron stateψσ1
1 (x), which is the usual relativistic LEED state, andψσ3

3
andψσ4

4 , which are time-reversed LEED states, are calculated by means of a relativistic layer
KKR method (cf. [14]) with the appropriate boundary conditions. The valence electron states
are obtained by matching—at the surface—linear combinations of bulk Bloch waves inside
the crystal with exponentially decaying plane waves in the vacuum half-space. There are
usually 2N independent solutionsψnσ2

2 (x), where the indexn = 1, . . . , N corresponds to the
N outward-propagating bulk Bloch-wave pairs.

The reaction cross section is approximated in first-order perturbation theory in the form
|〈34|Hee|12〉|2 , whereHee is the electron–electron interaction Hamiltonian, and|12〉 and|34〉
are antisymmetrized products of the above one-electron states. For primary electrons with
spin orientationσ1 relative to an axise (i.e. spin-polarization vectorP1 = σ1e) and fixed
energy and momentum, and for spin-unresolved detection of the outgoing electrons in fixed
directions, this leads to the following expression for the (e, 2e) cross section (‘intensity’):

I σ1(E3, E4) = (k3k4/k1)
∑
σ3,σ4

∑
E2,k

‖
2,nσ2

|f σ1,nσ2,σ3,σ4
1,2,3,4 − gσ1,nσ2,σ3,σ4

1,2,3,4 |2δ(E1 +E2 − E3− E4)

× δ(k‖1 + k‖2 − k‖3 − k‖4) (1)

wheref andg are direct and exchange scattering amplitudes:

f
σ1,nσ2,σ3,σ4
1,2,3,4 =

∫
ψ
σ3∗
3 (x)ψσ4∗

4 (x′)V (x,x′)ψσ1
1 (x)ψ

nσ2
2 (x′) d3x d3x ′. (2)

The expression forg is the same except thatx andx′ are interchanged in the first product
term. The state subscriptsi implicitly contain the quantum numbersEi andk‖i . Since the spin
of the outgoing electrons is not resolved, the observed cross section is theσ3, σ4 sum over
cross sections involving statesψσ3

3 andψσ4
4 . Each of these partial cross sections consists of a

sum over the independent valence states.V (x,x′) in equation (2) approximates the electron–
electron interactionHee by the Coulomb interaction statically screened by the ground-state
electrons of the target:

V (x,x′) =
∫

d3x ′′ ε−1(x,x′′)/|x′′ − x′| (3)

whereε(x,x′′) is the dielectric function of the crystalline surface system.
The asymmetryA of the cross section upon reversal of the primary electron spin is defined

from the intensitiesI± in equation (1) as

A(E3, E4) = (I+ − I−)/(I+ + I−). (4)

If, for a non-magnetic target system, spin–orbit coupling is absent in all four states, the
spinor wave functionsψσi

i (x) reduce to products of a scalar spatial wave function with a basic
spinor, and one easily obtains from equations (1), (2) thatI+ = I− and thereforeA = 0.
SOC—in at least one of the participating one-electron states—is thus essential for the (e, 2e)
cross section to depend on the primary electron spin.

2.2. Switch-off modifications

In the above formalism, the four one-electron statesψ
σi
i (x) contain elastic multiple scattering

from the ion-core lattice and, being solutions of the Dirac equation, spin–orbit coupling. To
obtain detailed insight into the physical origin of individual features of the intensitiesI± and
the asymmetryA associated with them, we find it useful to perform additional calculations,
in which the individualψσi

i (x) are artificially modified such that SOC and elastic scattering
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amplitudes from ion-core planes are selectively switched off. SOC in the stateψ
σi
i (x) is

switched off by replacing its fully relativistic calculation by a scalar relativistic one.
To specify the elastic scattering amplitude modifications, we recall a key ingredient of

relativistic layer KKR theory (for details, see e.g. chapter 4.3.5 in [14]), the scattering by a
single atomic layer (inside the crystal) with lattice periodicity parallel to the surface. The
wave field incident on this layer from the surface side (bulk side) is defined by plane-wave-
expansion spinor amplitudesu+

g (u−g ), whereg enumerates the surface reciprocal-lattice vectors
(with g = 0 corresponding tog = (0, 0)). The scattered wave field on the surface side (bulk
side) is described by amplitudesv−g (v+

g ), The incoming field is transformed into the outgoing
one by theS-matrix according to

vσg =
∑
σ ′g′

Mσσ ′
gg′ u

σ ′
g′ (5)

where theS-matrix elementsMσσ ′
gg′ are themselves 2× 2 spin matrices. TheM++

gg′ (M
−−
gg′ ) thus

describe transmission through the layer from its surface side to its bulk side (from its bulk to
its surface side), and theM−+

gg′ (M+−
gg′ ) represent reflection at the surface side (bulk side).

In the present work we denoteM++
gg′ by T (i)gg′ andM−+

gg′ byR(i)gg′ , where the indexi = 1, 3, 4
distinguishes between the primary electron state and the two ejected electron states. For the
ith state, elastic back reflection towards the surface can thus be completely switched off by
settingR(i)gg′ = 0 for all surface-parallel atomic layers. We do this individually for one state
at a time and use the resulting wave functionsψ

σi
i (x) for calculating the (e, 2e) cross section

according to equations (1), (2).

2.3. Application to W(001)

With a view to performing numerical calculations for W(001), we make the following
specifications. The surface geometry is that of a truncated bulk crystal but with an inward
relaxation of the topmost atomic layer by 7%, as was determined by SPLEED calculations and
measurements [13].

The optical potential for the occupied states is a self-consistent LMTO potential
cast into the muffin-tin form. For the continuum states it is augmented by an energy-
dependent imaginary inner potential part and a continuous surface potential barrier with image
asymptotics.

As for the screened electron–electron interaction (equation (3)), a realistic calculation of
the dielectric functionε(x,x′′) for W(001), i.e. a highly inhomogeneous electron gas, is well
beyond the scope of the present work. Instead, we resort to the Thomas–Fermi approximation

V (x,x′) = e−|x−x
′|/λ

|x− x′| . (6)

To obtain a physically reasonable estimate of the screening lengthλ in equation (6), we start
from the Thomas–Fermi expression (atT = 0)

λ = (4πe2N(EF ))
(−1/2) (7)

whereN(EF ) is the total density of states at the Fermi energyEF (cf. e.g. chapter 17 of [20]).
Rather than approximatingN(EF ) by a non-interacting homogeneous electron gas value, as
is frequently done, we take it from our self-consistent LMTO calculation. We thus obtain the
valueλ = 0.48 Å.

The above simple screening approximation appears acceptable for the present purpose for
the following reasons: (a) the spin-averaged (e, 2e) intensities which were calculated with it are
in rather good agreement with experimental data [9]; (b) physically reasonable departures ofλ
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from the above value are found to change our calculated spin-dependent intensitiesI±(E3, E4)

for each energy pair(E3, E4) only by a nearly constant factor; hence they leave the spin
asymmetryA (cf. equation (4)), which is the main focus of this work, unchanged.

With regard to the reaction geometry, we focus on the two coplanar set-ups shown in
figure 1: (a) normal incidence and symmetric detector positions; (b) grazing incidence and
non-symmetric detector positions. Thex, z-plane is chosen parallel to the W(010) plane
and hence is a mirror-symmetry plane of the crystal. Furthermore, it is a mirror plane of the
complete set-up if the primary beam is unpolarized or has its spin-polarization vectorP1 parallel
to they-axis. IfP1 is parallel to thex, z-plane, the mirror operationMxz transforms it into−P1

while leaving the remainder of the set-up unchanged. In particular, the intensityI+(E3, E4),
which is a scalar quantity, is invariant underMxz. This implies thatI+(E3, E4) = I−(E3, E4),
i.e. the asymmetryA(E3, E4) (equation (4)) is identically zero in this case. In contrast, forP1

parallel toy, i.e. normal to the reaction plane, there is no general connection betweenI+ and
I−. One can thus in general expect a non-vanishing asymmetryA. We recall that the above
findings are analogous to what is well known in spin-polarized LEED (SPLEED) (cf. e.g. [14]).
For our numerical investigations of spin-polarized (e, 2e) spectroscopy, we therefore choose
the primary electron spin alignment alongy.

Figure 1. A sketch of the two coplanar (e, 2e) geometries used in the present calculations: (a)ϑ1 = 0
(normal incidence) andϑ3 = ϑ4 = 40◦; (b)ϑ1 = 88◦ (grazing incidence),ϑ3 = 33◦, andϑ4 = 47◦.
The primary electron beam has spin-polarization vectorP1 = (0,±1, 0), i.e. normal to the reaction
plane(x, z). The spins of the two outgoing electrons 3 and 4 are not resolved. Thex, z-plane is
parallel to the (010) plane of the crystal.

3. Numerical results for W(001)

In the following we present and discuss numerical results of spin-polarized (e, 2e) spectroscopy
applied to W(001) for the two coplanar geometries shown in figure 1, with the spin of the
primary electrons aligned along±y, i.e. normal to the reaction plane.

3.1. Results for normal incidence

For the geometry shown in figure 1(a), typical results, obtained for primary beam energy
24.6 eV, are displayed in figure 2 as grey-scale contour plots in theE3, E4-plane. In these
plots, the counter-diagonal† line with outgoing electron pair energiesE3 + E4 = 20 eV
corresponds, from energy conservation, to valence electrons with energyE2 = EF = −8,
where8 = 4.6 eV is the work function of W(001). The (dashed) diagonal line, with equal pair
energiesE3 = E4, may be viewed as anE2-axis. In the two top panels of figure 2, the intensities
I+ andI− for spin-up and spin-down primary electrons (cf. equation (1)), respectively, are
seen to be largest forE2 in the range betweenEF andEF −2.5 eV, almost zero in the next 2 eV

† By ‘counter-diagonals’ we designate lines of constant total pair energyE3 +E4 in our I (E3, E4) contour plots.
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Figure 2. Spin-polarized (e, 2e) results for W(001) in the coplanar normal-incidence geometry of
figure 1(a), for primary electron energyE1 = 24.6 eV. The grey-scale contour plots in theE3, E4-
plane show: (top left) the cross sectionI+(E3, E4)obtained for primary electron spin up (along +y);
(top right) the cross sectionI−(E3, E4) for primary electron spin down (along−y); (bottom left) the
differenceD = I+− I−; and (bottom right) the asymmetryA = (I+− I−)/(I+ + I−). Along the
dashed diagonal line in each panel, the two outgoing electrons have equal energies,E3 = E4. The
solid counter-diagonal lineE3 +E4 = 20 eV and the dashed oneE3 +E4 = 18.5 eV correspond to
collisions with valence electrons at the Fermi energy and−1.5 eV below it, respectively. We used
up to 20 different shades, a selection of which are shown in the ‘grey-scale bar’ inserted into each
panel; each of these shadings represents an interval around the indicated value. The intensities are
given in arbitrary units; the asymmetry is by definition normalized to 1, with±1 corresponding to
±100%.

range, and again significant between−4.5 and−6 eV. We recall that this finding is similar
to the results for unpolarized primary electrons at lower energies, and is in line with thek‖-
resolved density of valence states [9].I+ andI− appear rather similar, but closer inspection
reveals significant differences, which become more apparent in the difference and asymmetry
plots shown in the two lower panels of figure 2.
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The contour plots exhibit an interesting symmetry property. Reflection at theE3 = E4

diagonal, i.e. interchangingE3 andE4, transformsI+ into I− and henceA into −A. This
is readily understood from the geometry shown in figure 1(a). Reflection at they, z-plane
reverses the spin of the primary electron and interchanges the outgoing electrons 3 and 4,
which implies thatI+(E3, E4) = I−(E4, E3).

The results in the contour plots in figure 2 can be displayed in a more quantitative way
by means of so-called energy-sharing curvesI±(E3−E4), which representI±(E3, E4) along
counter-diagonal lines of constantE3 + E4. In figure 3 we show a selection of such energy-
sharing curves, which are characterized by the corresponding valence electron energies−0.5
to−2.0 eV belowEF . It is obvious thatI±(E3 − E4) andA(E3 − E4) exhibit the reflection
behaviour which we discussed for the contour plots in figure 3. Most importantly for our
present work,I+ andI− differ appreciably from each other, and the corresponding asymmetry
profilesA(E3− E4), which are richly structured, attain maxima up to 25%.

-15 -10 -5 0 5 10 15

E1 = 24.6 eV 1 = 0

Intensity I
+

I
-

-0.5

-1.0

-1.5

-2.0

E3 - E4 (eV)
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Asymmetry

0

0

0

0

0.2

0.2

0.2

0.2
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-0.2

-0.2

-0.2

Figure 3. Energy-sharing curves of intensitiesI+ andI− (solid and dashed lines in the left-hand
half ) and asymmetryA (solid lines in the right-hand half ) corresponding to the contour plots in
figure 2 along a set of counter-diagonal linesE3 +E4 = 20 eV+x eV, with values ofx as indicated
in the individual panels;x corresponds to the valence electron energy relative to the Fermi energy.
The intensities are in the same arbitrary units as in figure 2.

To elucidate the physical mechanisms responsible for prominent features in theI±(E3−
E4) curves and their asymmetries, we focus on the results for valence electron energy−1.5 eV,
and present in figure 4 corresponding results with SOC and elastic layer scattering matrices
in the four one-electron states selectively switched off as described in section 2.2. We first
note that the line shapes of the ‘fully calculated’I+ and ofI− (figure 4(a)) change fairly little
if SOC is switched off in the primary electron state (figure 4(b)) or in the ejected electron
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Figure 4. Energy-sharing curves forI+ (solid lines), I− (dashed lines), and the difference
I+ − I− (dotted lines) in the normal-incidence geometry (figure 1(a)) forE1 = 24.6 eV and
E3 +E4 = 18.5 eV (i.e.E2 = EF − 1.5 eV). Results of the ‘complete calculation’ (panel (a)) are
compared with results of calculations in which spin–orbit coupling and elastic layer reflection
matricesR(i) in the four one-electron states (1: primary electron; 2: valence electron; 3 and
4: outgoing electrons) were selectively switched off (cf. section 2.2) as indicated in panels (b)
to (g); in panel (h), all elements of the layer transmission matrixT (1) of the primary electron have
been set to zero except the first diagonal element.

states (figure 4(c)), but are appreciably modified if there is no SOC in the valence state. The
latter appears plausible from the well-known substantial influence of SOC on the valence band
structure of W [16,17]. The comparatively smaller influence of SOC in the excited states can
be understood in the following way. Whilst the valence states have predominant d character
(l = 2), the excited-state bands which can couple to the vacuum to form the LEED states are
mostly sp-like (l = 0, 1) (cf. e.g. [21]), and SOC is overall stronger for the occupied valence
d states than for the unoccupied sp states.

In order to identify the scattering paths which are mainly responsible for the existence
of individual intensity peaks and for their asymmetry, a selection of scattering paths, which
involve various combinations of the plane-wave expansion parts of the primary electron state
and of the outgoing electron states, are illustrated by symbolic diagrams in figure 5. Formally,
these diagrams correspond to additive terms in a scattering path expansion of the direct and
exchange scattering amplitudesf andg (cf. equation (2)). Because of the absolute square in
equation (1) it is clear that the magnitude of a particular cross-section feature is in general not
equal to the sum over partial intensities (obtained from thef - andg-parts symbolized by the
diagrams), but in many cases this turns out to hold approximately.
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Figure 5. Symbolic diagrams of typical scattering paths in the (e, 2e) process for normal incidence
of the primary electron (labelled 1) and polar angles of 40◦ of the detected electrons (3 and 4).
The vertical thin solid line indicates the surface. The filled circle symbolizes the collision with
the valence electron. The vertical thin dashed lines stand for the atomic planes, and theRi

gg′ on
their right-hand sides are the elastic reflection matrix elements, which are relevant in the individual
diagrams. In diagrams (d) and (f ), the thick solid and dashed lines depict two different paths,
which are related to each other by symmetry. The refraction angle of electron 3 at the surface has
been drawn equal to that of electron 4, which is actually the case only forE3 = E4. ForE3 6= E4,
the diagrams are topologically equivalent to the ones shown, but—due to the energy dependence
of refraction at the surface—the internal angles of electron 3 are different from those of electron 4.

We now interpret the individual intensity peaks in figure 4(a) and deduce the relevant
scattering paths by comparing each peak with its switch-off counterparts in panels (b)–(h) of
figure 4.

For peak A, we thus find that the most important scattering paths are those symbolized
in figure 5(b) and figure 5(f ), which involve off-diagonal elementsT (1)g0 of the transmission
matrix, and that its asymmetry is produced by SOC in state 1. In the following, we provide a
more detailed analysis of peak A and show how these results have been obtained. From panels
(a)–(d) of figure 4 it is evident that the asymmetry of peak A and that of its counterpart A′ arise
purely from spin–orbit coupling in state 1. This implies, because of normal incidence, that it
must be associated with off-diagonal elementsT

(1)
g0 of the transmission matrix orR(1)g0 of the

reflection matrix, where the indexg refers to a two-dimensional reciprocal-lattice vectorg.
Because of the low energy and of the coplanar geometry, the most relevantg are(1, 0)2π/a0

and(−1, 0)2π/a0. Paths involvingR(1)g0 , which are depicted in figure 5(d), are however ruled
out by the persistence of the asymmetry of peak A in figure 4(e), whereR(1) = 0. On the other
hand, peak A is strongly reduced and its asymmetry vanishes if the off-diagonal elements of
T (1) are switched off (cf. figure 4(h)). This pinpoints the crucial role of the above-mentioned
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T
(1)
g0 . Possible scattering paths are therefore the ones shown in figure 5(b) and figure 5(f )

plus a pair of paths like those in figure 5(f ), except that now both electron 3 and electron 4
undergo a reflection before leaving the crystal. The existence of a reduced peak A with
substantial asymmetry in figure 4(g), whereR(3,4) = 0, implies that the direct-exit paths in
figure 5(b) contribute significantly. Figure 4(f ) points to the importance of the path withR(4)

in figure 5(f ). That the apparently equivalent path withR(3) is actually negligible can be
understood from the large difference between the energies of two electrons:E3 = 2.75 eV
andE4 = 15.75 eV. Therefore in generalR(3) 6= R(4). Since electron 3 is strongly refracted
at the surface (becoming close to normal inside the crystal) and electron 4 only weakly so,
the two path diagrams in figure 4(f ) are in this case not mirror symmetrical with each other.
This inequivalence is essential for the left–right asymmetry ofT

(1)
g0 andT (1)−g0 to be able to

produce a spin asymmetry of the (e, 2e) intensity. Contrasting with peak A, its counterpart A′

at (E3, E4) = (15.75, 2.75) stems partly from the lower path in figure 5(f ), which involves
R(3), and is consequently reduced in figure 4(f ).

Peaks B, C, and D in figure 4 can be interpreted along analogous lines. For peak B,
figure 4(f ) indicates thatR(3) is important, and hence also the lower diagram in figure 5(f ).
The asymmetry of B is partly due to spin–orbit coupling in states 3 and 4, i.e. it is the usual
SPLEED asymmetry for these states. This suggests that paths with direct transmissionT

(1)
00

like the one in figure 4(e) can contribute significantly.
Peak C and its counterpart C′ originate mainly from the lower and the upper paths in

figure 5(f ) (and theirT (1)00 -analogues), respectively. But, as figure 4(e) indicates, paths with
primary beam reflectionR(1) like in figure 5(d) are also important. Since a large part of the spin
asymmetry of peak C persists if there is no SOC in states 1, 3, and 4 (cf. figure 4(b), 4(c)), it
must be produced by SOC in the valence state. An explanation of how this happens is provided
by our construction of the valence statesψσ2

2 (x) (cf. section 2.1): each one involves a Bloch
wave propagating off-normally (becausek‖2 6= 0 if E3 6= E4) towards the surface, at which it
is reflected into Bloch waves going into the crystal. This process may be viewed as a kind of
spin-polarized LEED from inside. Because of SOC, the reflection amplitudes and therefore
the amplitudes of the ingoing Bloch waves are in general different forσ2 = + andσ2 = −.
Consequently, the pairs of scattering amplitudes (cf. equation (2))fσ1,nσ2,σ3,σ4 with σ2 = ±
are different forσ1 = + andσ1 = −. The same holds for the exchange scattering amplitudes
g. Theσ1-dependence survives theσ2-summation in equation (1) and therefore extends to the
intensitiesI σ1.

In order to assess the sensitivity of (e, 2e) spectroscopy to the surface structure, we
performed additional calculations, in which the reduction of the topmost interlayer spacing
was varied from the value−7% (determined by SPLEED analysis in [13]). Some typical spin-
dependent intensity and asymmetry results are shown as energy-sharing curves in figure 6.
Going from 0 to−10% relaxation, the spectra change substantially in overall height and in
line shape. The broad intensity peak C is seen to grow more strongly than its neighbour B.
In all of the panels, C is associated with a broad asymmetry feature, the magnitude of which
decreases from close to 40% to the still sizable value of 20%. In contrast, the asymmetry of
B is fairly small and changes only weakly. Such selective sensitivity of neighbouring features
is known from SPLEED to be particularly useful for determining structure parameters by
comparing calculated spectra with their experimental counterparts.

3.2. Results for grazing incidence

In figure 7 we show contour plots calculated for the grazing-incidence geometry of figure 1(b),
with primary electrons of energy 20.6 eV spin polarized along±y. In the two top panels, the
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Figure 6. The influence of the inward surface relaxation of W(001) on the energy-sharing curves
of intensitiesI+ andI− (solid and dashed lines in the left-hand half ) and asymmetryA (solid
lines in the right-hand half ) in the normal-incidence geometry (figure 1(a)) forE1 = 24.6 eV and
E3 +E4 = 18.5 eV (i.e.E2 = EF − 1.5 eV). The percentage deviation of the topmost interlayer
spacing from the bulk value is indicated in the respective panels.

intensitiesI+ andI− are seen to be largest for collisions with valence electrons of energyE2

within a 2.5 eV range from the Fermi energyEF . I+ andI− are substantially different around
(E3, E4) = (4.5, 11.5), with corresponding sizable peaks in the difference and asymmetry
plots, which are shown in the two bottom panels of figure 7. In contrast to the normal-incidence
results in figure 2, there is no mirror symmetry with respect to theE3 = E4 diagonal line. This
is easily understood from the fact that in an oblique-incidence geometry there is no spatial
transformation which only interchanges the two detection directions and reverses the primary
electron spin.

From the results shown in the contour plots of figure 7, we present in figure 8 a set of
energy-sharing curves, which are characterized by valence electron energies−0.5 to−2.0 eV
belowEF . For E3 > E4 the intensity line shapes are fairly similar and the peak around
10 eV has a spin asymmetry of about−10%. ForE3 < E4, the sharing curve forI+ with
E2 = −0.5 eV has a particularly strong peak around−7 eV, with an asymmetry of 30%.

We therefore choose the sharing curves withE2 = −0.5 eV for a more detailed
investigation analogous to the one performed above in the normal-incidence case. Panels
(a)–(d) in figure 9 demonstrate the effects of switching off spin–orbit coupling. Comparison
of panels (a)–(c) reveals that SOC in states 1, 3, and 4 has no noticeable influence on the
spectra, except for the disappearance of the asymmetry of peak C, which is jointly produced
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Figure 7. Spin-polarized (e, 2e) contour plots for W(001) as in figure 2, but for the grazing-incidence
(ϑ1 = 88◦) geometry sketched in figure 1(b), with primary electron energyE1 = 20.6 eV. The
solid counter-diagonal lineE3 + E4 = 16 eV corresponds to collisions with valence electrons at
the Fermi energy.

by SOC in these states. If however the valence electron state 2 is calculated without SOC, the
entire spectral shape changes drastically (figure 9(d)). In particular the strongly spin-dependent
dominant peak A almost vanishes. Its large asymmetry is seen to be almost entirely due to
SOC in the valence state. For an explanation of the underlying mechanism we refer the reader
to the penultimate paragraph of section 3.1.

Insight into the scattering paths, which are relevant for individual intensity and asymmetry
features, is gained from the energy-sharing curves in panels (e)–(h) of figure 9, which were
calculated with selected elastic layer reflection and transmission amplitudes switched off. The
dominant peak A is seen to be somewhat reduced ifR(3) = 0, and practically vanishes for
R(4) = 0. Additional calculations, in which onlyR(4)00 was switched off, did not however
produce any change of peak A. This implies that peak A strongly relies on non-specular
reflection matrix elementsR(4)g0 . We identify the most relevant reciprocal-lattice vector labelled
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Figure 8. Energy-sharing curves of intensitiesI+ andI− (solid and dashed lines in the left-hand
half ) and asymmetryA (solid lines in the right-hand half ) corresponding to the contour plots in
figure 7, taken along a set of counter-diagonal linesE3 + E4 = 16 eV +x eV, with values ofx
as indicated in the individual panels;x corresponds to the valence electron energy relative to the
Fermi energy.

by g asg = (−1, 0), since the otherg in the reaction plane belong to internally evanescent
beams. The corresponding scattering path diagram is shown in figure 10(a), in which the
collision is followed by direct emission of electron 3 and emission of electron 4 via non-
specular reflection. A minor contribution can be ascribed to the path shown in figure 10(b),
which involves reflection of both electron 3 and electron 4.

For the double peaks B and C, the reductions seen in figure 9(f ) and figure 9(g) mainly
point to scattering paths like the one shown in figure 10(b).

If reflectionR(1) or non-specular transmissionT (1)g0 of the primary electron is switched
off, all of the peaks are significantly enhanced (cf. figures 9(e) and 9(h)). While surprising at
first glance, this can easily be understood as a consequence of adding up the partial scattering
amplitudes associated with different symbolic diagrams (for details, see above in the context
of figure 5). We conclude that the path shown in figure 10(c) plays an important role. This
is particularly interesting for peak C, the asymmetry of which vanishes in figures 9(e) and
9(h), and thus can be traced back to this path. From SPLEED knowledge it is evident that
the amplitude of beam 1 ‘just before the collision’ should depend on the spin of the primary
electron and so consequently should the (partial) scattering amplitude.

Energy-sharing curves for a sequence of different primary electron energiesE1 are
shown in figure 11. From the almost spin-independent near-centre peak atE1 = 14.6 eV a
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Figure 9. Energy-sharing curves forI+ (solid lines), I− (dashed lines), and the difference
I+ − I− (dotted lines) in the grazing-incidence geometry (figure 1(b)) forE1 = 20.6 eV and
E3 +E4 = 15.5 eV (i.e.E2 = EF − 0.5 eV): results of the ‘complete calculation’ (panel (a)) are
compared with results of calculations in which spin–orbit coupling and elastic scattering amplitudes
in the four one-electron states (1: primary electron; 2: valence electron; 3 and 4: outgoing electrons)
were selectively switched off as indicated in panels (b) to (h).

Figure 10. Symbolic diagrams of three important scattering paths in the (e, 2e) process for grazing
incidence of the primary electron (labelled 1) and polar angles 33◦ and 47◦ of the detected electrons 3
and 4, respectively. The symbols used are the same as in figure 5.

substantially spin-dependent peak is seen to have split off towards the left atE1 = 16.6 eV. With
increasingE1, it disperses to the left and, while its size decreases, the asymmetry associated
with it increases up to about 30% atE1 = 22.6 eV. It should therefore be easily observable in a
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Figure 11. Energy-sharing curves of intensitiesI± and asymmetryA for the grazing-incidence
geometry (cf. figure 1(b)) and various primary beam energiesE1 as indicated in the panels. The
detected electrons with energy sumE3 + E4 = E1 − 8 − 0.5 eV originate from collisions with
valence electrons of energy 0.5 eV below the Fermi level.

spin-polarized (e, 2e) experiment. Its asymmetry, as deduced above in detail forE1 = 20.6 eV,
stems almost entirely from SOC in the valence state (at energy−0.5 eV belowEF ).

4. Conclusions

Our numerical calculations for W(001) predict that the low-energy (e, 2e) scattering cross
section depends significantly on the spin of the primary electron. This spin asymmetry reaches
values up to 30% in conjunction with strong intensity. It is therefore easily within reach of
present-day experimental capabilities.

The physical origin of the spin asymmetry is spin–orbit coupling (SOC) in at least one of
the participating one-electron states. Calculations in which SOC was selectively switched off
indicate that in some cases the asymmetry arises mainly from the primary electron state, which
is the usual SPLEED state. For the majority of peak asymmetries, however, SOC in the valence
state is partly or fully responsible. The underlying mechanism can be pictorially understood
as SPLEED at energies belowEF , with an unpolarized Bloch electron beam impinging from
inside the crystal onto the surface, and the process of collision with the spin-polarized primary
electron acting as a spin detector for the back-diffracted Bloch electrons. Since the surface
is thus vital for the very existence of the asymmetryA of the (e, 2e) scattering cross section,
A responds sensitively to changes in the surface region and promises to be a useful tool for
studying geometrical and electronic properties of surfaces and thin films.

An analysis of the scattering paths revealed an important role of elastic reflection of the
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primary electron and of one or both outgoing electrons at the ion-core planes.
Our present results for a non-magnetic system have implications for spin-polarized (e, 2e)

spectroscopy applied to ferromagnetic systems. Although for these the exchange interaction
can generally be expected to be the main source of an observed spin asymmetry, SOC will also
be of importance and will have to be taken into account in calculations and in the interpretation
of experimental data.
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